М1. Решите неравенство $|x+x^2+...+x^n+...|<1$, где |x|<1.

Сумма бесконечно убывающей геометрической прогрессии с первым членом $b_1 = x$ и знаменателем q = x равна $S = \frac{x}{1-x}$. Неравенство $\left| \frac{x}{1-x} \right| < 1$ равносильно системе неравенств $-1 < \frac{x}{1-x} < 1$. Решая эту систему с учётом условия |x| < 1, получаем ответ.

Ответ: $x \in (-1,0,5)$.

M2. При каких значениях параметра a сумма четвёртых степеней корней квадратного уравнения $x^2 - x + a = 0$ принимает наименьшее значение?

Уравнение имеет действительные корни при $D = 1 - 4a \ge 0$, то есть при $a \le \frac{1}{4}$.

При таких a по теореме Виета $x_1 + x_2 = 1$, а $x_1x_2 = a$.

Выразим сумму четвёртых степеней корней через а:

$$x_1^4 + x_2^4 = (x_1^2 + x_2^2)^2 - 2x_1^2 x_2^2 = ((x_1 + x_2)^2 - 2x_1 x_2)^2 - 2x_1^2 x_2^2 = (1 - 2a)^2 - 2a^2 = 2a^2 - 4a + 1$$

Квадратичная функция $f(a) = 2a^2 - 4a + 1$ убывает на промежутке $(-\infty;1]$ и возрастает на $[1;+\infty)$.

Так как $a \le \frac{1}{4}$, то наименьшее значение на промежутке $(-\infty; \frac{1}{4}]$ функция f(a) принимает при $a = \frac{1}{4}$.

Ответ: $a = \frac{1}{4}$

M3. В треугольнике ABC точка M – середина AC, MD и ME – биссектрисы треугольников ABM и CBM соответственно. Отрезки BM и DE пересекаются в точке F. Найдите MF, если DE = d.

По свойству биссектрисы из треугольников АМВ и

$$CMB$$
 (см. рисунок) получим, что $\frac{AD}{BD} = \frac{AM}{BM}$ и

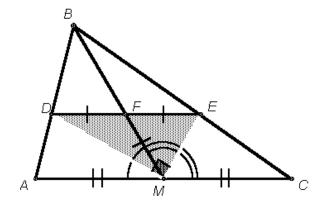
$$\frac{CE}{BE} = \frac{CM}{BM}.$$

По условию,
$$AM = CM$$
, значит, $\frac{AD}{BD} = \frac{CE}{BE}$,

следовательно, $DE \parallel AC$ (из подобия треугольников DBE и ABC). Тогда F – середина отрезка DE.

Так как MD и ME — биссектрисы смежных углов, то треугольник DME — прямоугольный. Его медиана MF, проведенная из вершины прямого угла, равна половине гипотенузы DE.

Ответ: 0,5*d*.

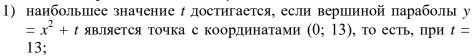


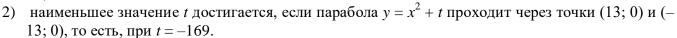
М4. Найдите наибольшее и наименьшее значение выражения $y - x^2$, если $|x| + |y| \le 13$.

Построим график уравнения |x|+|y|=13, тогда данному неравенству удовлетворяют координаты всех точек, принадлежащих этому графику и точек, лежащих внутри ограниваемой им области (см. рисунок).

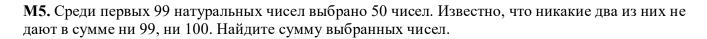
Пусть $y - x^2 = t$, тогда решение задачи сводится к тому, чтобы найти наибольшее и наименьшее значения переменной t, для которых график функции $y = x^2 + t$ имеет общие точки с найденным множеством.

Так как график указанной функции получается из параболы $v = x^2$ параллельным переносом вдоль оси у, то:





Ответ: наибольшее значение равно 13, а наименьшее значение равно -169.



Разобьем первые 99 натуральных чисел (кроме числа 50) на пары так, чтобы сумма чисел в каждой паре равнялась 100: (1; 99), (2; 98), ..., (48; 52), (49; 51).

Из условия следует, что из каждой пары могло быть выбрано только одно число, таких пар – 49, поэтому число 50 должно быть выбрано обязательно.

Тогда из последней пары не могло быть выбрано число 49 (иначе 50 + 49 = 99), то есть из нее выбрано число 51. Значит, из предпоследней пары должно было быть выбрано число 52 (иначе 48 + 51 = 99). Аналогичным рассуждением получим, что из предыдущей пары выбрано число 53, и так далее, до числа 99, выбранного из первой пары.

Таким образом, искомый набор чисел восстанавливается однозначно: 50, 51, ..., 99. Сумма чисел в таком наборе равна: $50 + 51 + ... + 99 = (50 + 99) \times 25 = 149 \times 25 = 3725$.

Ответ: 3725.

MC1. Решите уравнение $2\sin(x+\frac{\pi}{4}) = tgx + ctgx$

Поскольку
$$|tgx+ctgx| \ge 2$$
, а $2|\sin(x+\frac{\pi}{4})| \le 2$, то обе части могут быть равны только 2. Это условие выполняется, если x удовлетворяет одной из систем: (1)
$$\begin{cases} tgx=1 \\ \sin(x+\frac{\pi}{4})=1 \end{cases}$$
 или (2)
$$\begin{cases} tgx=-1 \\ \sin(x+\frac{\pi}{4})=-1 \end{cases}$$

Вторая система несовместна. Решение первой системы даёт ответ.

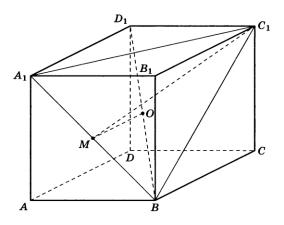
Otbet:
$$\left\{ \frac{\pi}{4} + 2\pi n \mid n \in \mathbb{Z} \right\}$$

МС2. В кубе $ABCDA_1B_1C_1D_1$ найдите угол между плоскостями BA_1C_1 и BA_1D_1 .

Пусть точка O — центр куба, а точка M — середина ребра A_1B . $A_1D_1 \perp A_1B$, а MO — средняя линия треугольника BA_1D_1 , поэтому $MO \perp A_1B$. Треугольник BA_1C_1 равносторонний, поэтому $C_1M \perp A_1B$. Таким образом, искомый угол — это $\angle OMC_1$. Обозначим его α .

Найдём стороны треугольника OMC_1 .

Из треугольника BA_1D_1 находим OM = 0.5.



Из треугольника BA_1C_1 находим $MC_1=\frac{\sqrt{3}}{2}A_1C_1=\frac{\sqrt{3}}{2}\sqrt{2}=\sqrt{\frac{3}{2}}$. Так как O – середина диагонали AC_1 , то $OC_1=\frac{\sqrt{3}}{2}$. Теперь запишем теорему косинусов для треугольника OMC_1 : $(OC_1)^2=(OM)^2+(MC_1)^2-2(OM)(MC_1)\cos\alpha$. Подставим длины сторон треугольника OMC_1 :

$$(OC_1)^2 = (OM)^2 + (MC_1)^2 = 2(OM)(MC_1)\cos \alpha$$
. Подставим длины сторон $(\sqrt{3})^2 = 1$ 3 1 $\sqrt{3}$

$$\left(\frac{\sqrt{3}}{2}\right)^2 = \frac{1}{4} + \frac{3}{2} - 2 \cdot \frac{1}{2} \cdot \sqrt{\frac{3}{2}} \cos \alpha . \quad \text{Отсюда } \cos \alpha = \sqrt{\frac{2}{3}} .$$

Ответ: $\arcsin\left(\sqrt{\frac{2}{3}}\right)$

MC3. Решите неравенство $\frac{\log_{2^{x+7}} 4}{\log_{2^{x+7}} (-16x)} \le \frac{1}{\log_2 \log_{\frac{1}{2}} 2^x}.$

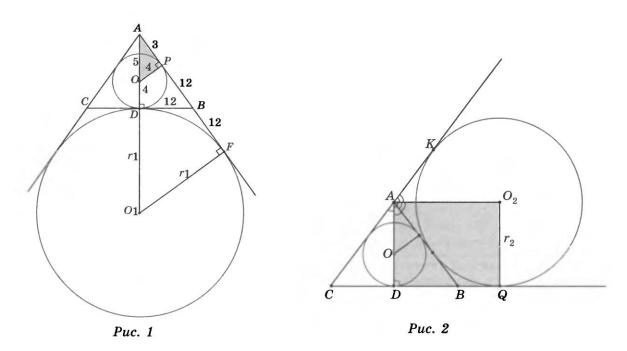
Решение ищем на множестве: $\begin{cases} x < 0 \\ x \neq -7 \\ x \neq -1 \\ x \neq -\frac{1}{16} \end{cases}$

Пусть $y = \log_2(-x)$. Тогда неравенство принимает вид $\frac{2}{4+y} \le \frac{1}{y}$, откуда y < -4 или $0 < y \le 4$.

Значит $-16 \le x < -1$ или $-\frac{1}{16} < x < 0$. Из полученных промежутков надо исключить x = 7.

Ответ: $x \in [-16; -7) \cup (-7; -1) \cup (-\frac{1}{16}; 0)$.

MC4. Высота равнобедренного треугольника, опущенная на его основание, равна 9, а радиус вписанной в треугольник окружности равен 4. Найдите радиус окружности, касающейся стороны треугольника и продолжений двух других его сторон.



Пусть AD — высота равнобедренного $\triangle ABC$, опущенная на его основание BC, Обозначим O — центр вписанной окружности, P — точку ее касания с боковой стороной AB, $\angle BAD = \alpha$.

Тогда
$$AO = AD - OD = 9 - 4 = 5$$
. Из прямоугольного $\triangle AOP$ находим $AP = 3$, $\sin \alpha = \frac{OP}{OA} = \frac{4}{5}$.

Тогда
$$BD = ADtg\alpha = 9 \cdot \frac{4}{3} = 12$$
.

Пусть окружность с центром O_1 и радиусом r_1 касается продолжений боковых сторон AB и AC в точках F и G соответственно (рис. 1), а также основания BC. Тогда D — точка касания, поэтому BF = BD = BP = 12, AF = AP + PB + BF = 3 + 12 + 12 = 27.

Следовательно,
$$r_1 = O_1 F = A F t g \alpha = 27 \cdot \frac{4}{3} = 36$$
.

Пусть теперь окружность с центром O_2 радиуса r_2 касается боковой стороны AB, продолжения основания BC в точке Q и продолжения боковой стороны AC в точке K (рис. 2). Центр окружности, вписанной в угол, лежит на его биссектрисе, поэтому AO_2 и AD – биссектрисы смежных углов BAK и DAB, значит, $\angle DAO_2 = 90^\circ$. Тогда $ADQO_2$ – прямоугольник. Следовательно, $r_2 = O_2Q = AD = 9$.

MC5. При каких значениях параметра a система имеет единственное решение:

$$\begin{cases} x + \sqrt{y} = 1 \\ a + 3 - \sqrt{y} = \frac{1}{2}(a - x)^2 \end{cases}$$

Выразим из 1-го уравнения \sqrt{y} и подставим его во 2-ое уравнение при условии $\sqrt{y} = 1 - x \ge 0$.

Исходная система будет иметь единственное решение тогда и только тогда, когда уравнение $a+2+x=\frac{1}{2}(a-x)^2$ будет иметь только одно решение, удовлетворяющее условию $1-x\geq 0$.

Это квадратное уравнение преобразуется к виду: $x^2 - 2(a+1)x + a^2 - 2a - 4 = 0$. Для того, чтобы оно имело единственное решение $x \le 1$ необходимо и достаточно, чтобы выполнялись условия:

$$\begin{bmatrix} \begin{cases} D=0 \\ x_0 \leq 1 \end{cases} \\ f(1)<0 \end{cases}, \text{ где} \qquad D=4((a+1)^2-(a^2-2a-4)) \\ \begin{cases} f(1)=0 \\ x_0>1 \end{cases} \end{cases}. \text{ Тогда} \qquad \begin{bmatrix} \begin{cases} 4a+5=0 \\ a+1 \leq 1 \end{cases} \\ a^2-4a-5<0 \end{cases} \\ \begin{cases} a^2-4a-5=0 \\ a+1>1 \end{cases} \end{cases}$$

Решение первой системы $a = -\frac{5}{4}$, второго неравенства — $a \in (-1;5)$, третьей системы — a = 5.

Ответ:
$$a \in \left\{-\frac{5}{4}\right\} \cup (-1;5]$$

условия $x_0 \le 1 - 2$ балла.