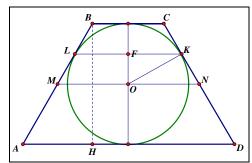
М1. Цифры некоторого трёхзначного числа образуют геометрическую прогрессию. Найдите её знаменатель, если известно, что, поменяв местами цифры сотен и единиц, получим число на 495 больше исходного.

Решение

Обозначим число \overline{abc} . Тогда по условию $b^2 = ac$ (1) и 100a + 10b + c + 495 = 100c + 10b + a (2). Из уравнения (2) находим, что c = a + 5. Перебор различных значений a приводит нас к выводу, что условие (1) выполняется при a = 4, c = 9, при этом, b = 6. Таким образом, искомое число -469, а знаменатель прогрессии 3/2.

Ответ: ,5

M2. Окружность радиуса 4 вписана в равнобедренную трапецию, одно из оснований которой равно 4. Найдите: а) второе основание трапеции; б) расстояние между точкам касания этой окружности с боковыми сторонами трапеции.



Решение

а) Обозначим большее основание a, а боковую сторону -c. Так как в трапецию вписана окружность, a+4=2c (1) Высота трапеции BH=2r=8, тогда по теореме Пифагора

для
$$\triangle ABH$$
: $c^2 = 8^2 + \left(\frac{a-4}{2}\right)^2$ (2)

Из уравнений (1) и (2) находим a = 16.

б) Треугольник FKO подобен треугольнику KON. Поэтому $\frac{FK}{OK} = \frac{OK}{ON}$. OK = 4, ON = 5. Отсюда

$$FK = 3, 2, a \ LK = 6, 4$$

Ответ: а) 16; б) 6,4

M3. Решите уравнение.
$$\frac{3^{2x}}{100^x} = 2(0,3)^x + 3$$

Решение

Уравнение приводится к виду: $(0,3)^{2x} - 2(0,3)^x - 3 = 0$ Один из корней этого квадратного уравнения отрицателен, другой равен 3. Таким образом $(0,3)^x = 3$, а $x = \log_{0,3} 3$

Ответ: $\log_{0,3} 3$

М4. Найдите значение выражения $\frac{\log_5 30}{\log_{150} 5} - \frac{\log_5 750}{\log_6 5}$

Решение

Приведём все логарифмы к основанию 5:

$$\log_5 30 \cdot \log_5 150 - \log_5 6 \cdot \log_5 750 = (1 + \log_5 6)(2 + \log_5 6) - \log_5 6 \cdot (3 + \log_5 6) = 2$$

Ответ: 2

М5. Решите неравенство $\sqrt{x^4 - 2x^2 + 1} > 1 - x$

Решение

Вынесем из-под корня полный квадрат: $\left|x^2-1\right| > 1-x \Leftrightarrow \begin{bmatrix} x^2-1 > 1-x \\ x^2-1 < x-1 \end{bmatrix} \Leftrightarrow \begin{bmatrix} x^2+x-2 > 0 \\ x^2-x < 0 \end{bmatrix}$

Объединив решения двух неравенств, получаем

Other: $x \in (-\infty; -2) \cup (0; 1) \cup (1; \infty)$

М6. Решите систему уравнений
$$\begin{cases} 2\log_x 8 + 3y = 24 \\ -2\log_x^3 0, 5 + y = 8 \end{cases}$$

Решение

Умножим второе уравнение на 3 и вычтем его из первого уравнения. Получим: $\log_x^3 0.5 + \log_x 2 = 0$,

умножим второе уравнение на 3 и вычтем его из первого уравнения. Получим:
$$\log_x^3 0.5 + \log_x 2$$
 или $\log_x^3 2 = \log_x 2$. Откуда $\log_x 2 = 1$. Из 2-го и 3-го уравнений находим x , а по x находим y . $\log_x 2 = -1$

Ответ: (2; 6), (0,5; 10)

M7. Найдите наибольшее и наименьшее значение функции $f(x) = \sin^2 x + \cos x - 0.5$

Решение

Преобразуем функцию к виду: $f(x) = -\cos^2 x + \cos x + 0.5$ и сделаем замену $t = \cos x$. Достаточно найти наибольшее и наименьшее значение функции $f(t) = -t^2 + t + 0.5$ на отрезке [-1;1]

$$f_{\text{max}}(0,5) = 0,75$$
, $f_{\text{min}}(-1) = -1,5$

М8. Решите уравнение $(\sin 2x - \tan x)\sqrt{2 - x - x^2} = 0$

Решение

Произведение обращается в 0, когда либо $2-x-x^2=0$, т.е x=-2 или x=1, либо первый сомножитель равен нулю, а второй не теряет смысла:

$$\begin{cases} \sin 2x - \operatorname{tg} x = 0 \\ 2 - x - x^2 > 0 \end{cases} \Leftrightarrow \begin{cases} \sin x (2\cos x - 1/\cos x) = 0 \\ -2 < x < 1 \end{cases}$$

Уравнение $\sin x = 0$ в интервале от -2 до 1 имеет один корень x = 0. Второй сомножитель

обращается в 0, когда $\cos x = \pm \frac{\sqrt{2}}{2}$. В интервале от –2 до 1 лежат корни $\pm \frac{\pi}{4}$

Ответ:
$$\left\{-2;0;\pm\frac{\pi}{4};1\right\}$$

м9. Решите неравенство $\log_3(x+2) > \log_{(x+2)} 81$

Решение

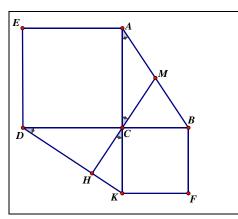
Перейдём к основанию 3 и обозначим $\log_3(x+2) = y$. Получим неравенство $y > \frac{4}{y}$ или $\frac{y^2-4}{y} > 0$.

Методом интервалов получим, что y > 2 или -2 < y < 0. Возвращаясь к замене, найдём x.

Otbet:
$$x \in \left(-1\frac{8}{9}; -1\right) \cup (7; \infty)$$

M10. На катетах прямоугольного треугольника ABC построены квадраты ACDE и BFKC. Точка M- середина стороны AB. Прямые CM и DK пересекаются в точке H.

- а) Докажите, что CM перпендикулярна DK.
- б) Найдите МН, если катеты треугольника АВС равны 30 и 40.



Решение

a) $\triangle ABC = \triangle DCK \Rightarrow \angle BAC = \angle KDC$

Так как треугольник AMC равнобедренный, то $\angle BAC = \angle ACM$. $\angle ACM = \angle KCH$ — вертикальные.

Таким образом, $\angle KCH = \angle KDC$. Значит в треугольниках KCH и KDC равны и углы $\angle CHK = \angle DCK = 90^{\circ}$.

б) Гипотенуза $AB = \sqrt{30^2 + 40^2} = 50 \Rightarrow CM = 25$.

Высота $CH = \frac{30 \cdot 40}{50} = 24$. MH = 25 + 24 = 49.

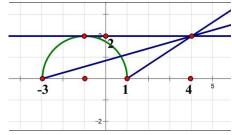
Ответ: 49

М11. При каких значениях параметра a, уравнение $ax + \sqrt{3 - 2x - x^2} = 4a + 2$ имеет единственное решение?

Решение

Уединим радикал и выделим под корнем полный квадрат: $\sqrt{4-(x^2+2x+1)}=2-a(x-4)$.

Сделаем замену -a=k , получим $\sqrt{4-(x+1)^2}=2+k(x-4)-$ слева уравнение полуокружности,



справа – пучок прямых, проходящих через точку (4; 2).

Уравнение имеет единственное решение, если прямая проходит горизонтально (т.е. k = 0), или если прямая проходит через точку (1; 0) и поворачивается до точки (–3; 0), что соответствует

значениям k от $\frac{2}{3}$ до $\frac{2}{7}$. Тогда $-\frac{2}{3} \le a < -\frac{2}{7}$.

Ответ: $a \in \left[-\frac{2}{3}; -\frac{2}{7} \right] \cup \{0\}$