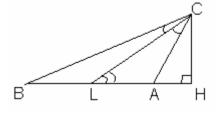
1. **Ответ:** $\frac{1}{3}$.

Решение. Так как $x \ge 0$, то $\sqrt{x(x+2)+1} = \sqrt{x^2+2x+1} = |x+1| = x+1$. Тогда $\sqrt{(x-3)(x+1)+4} = \sqrt{x^2-2x+1} = |x-1|$. Таким образом, |x-1| = 2x. Раскрывая модуль на каждом из промежутков [0,1] и (1,+ ∞), получим, что $x = \frac{1}{3}$.

2. **Решение.** Пусть ABC — данный треугольник, $\angle B = \alpha$, $\angle A = 120^\circ + \alpha$. Тогда $\angle C = 60^\circ - 2\alpha$. Если CL — биссектриса данного треугольника, то $\angle CLA = \angle LCB + \angle LBC = \alpha + (30^\circ - \alpha) = 30^\circ$. Пусть CH — высота треугольника ABC, тогда в треугольнике CLH катет CH, лежащий против угла в 30° в два раза меньше, чем гипотенуза CL.



3. Ответ: первое число больше.

Решение.	Рассмотрим	разность	между	данными	числами:
$\sqrt{2006} + \sqrt{2005 + \sqrt{2005}}$	$\sqrt{2006} - \sqrt{2005} - \sqrt{2006}$	$\frac{1}{1 + \sqrt{2005}} = \frac{1}{\sqrt{2006} + 1}$	$\frac{1}{\sqrt{2005}} - \frac{1}{\sqrt{2005}}$	$\frac{1+\sqrt{2005}-\sqrt{2006}}{005+\sqrt{2006}}+\sqrt{2006}+$	 >0,

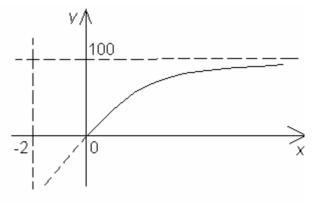
так как первая дробь больше второй. Действительно, числитель первой дроби больше числителя второй, а знаменатель – меньше.

- 4. **Решение.** Пусть корреспондент прав, и i-ый шахматист выиграл n_i партий, и столько же свел вничью. Поскольку он сыграл 19 партий, то остальные $19-2n_i$ он проиграл. Так как партия, выигранная одним из участников, является проигранной для другого, то суммарное количество выигранных партий равно суммарному количеству проигранных: $n_1 + n_2 + \ldots + n_{20} = (19-2n_1) + (19-2n_2) + \ldots + (19-2n_{20})$. То есть, $3(n_1 + n_2 + \ldots + n_{20}) = 19\cdot20$, откуда $n_1 + n_2 + \ldots + n_{20} = \frac{19\cdot20}{3}$, но это невозможно, так как в левой части равенства стоит целое число, а в правой не целое.
- 5. **Решение.** Через промежуток времени t часов с момента старта Гриша проедет x(t) км. Его средняя скорость составит $\frac{x(t)}{t}$ км/ч. Оставшиеся 100-x(t) км Гриша, по мнению компьютера, будет двигаться с той же средней скоростью, то есть проедет этот участок за $\frac{100-x(t)}{\underline{x(t)}}$ ч, что по условию всегда составляет 2 ч.

Тогда
$$\frac{100-x(t)}{\frac{x(t)}{t}}$$
 = 2, то есть, $x(t) = \frac{100t}{t+2}$, $t > 0$. Это и есть

искомая зависимость.

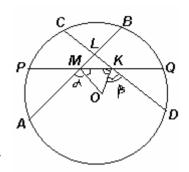
Для построения графика преобразуем: $\frac{100t}{t+2} = \frac{100(t+2)-200}{t+2} = 100 - \frac{200}{t+2} \,, \quad t > 0. \quad \mbox{Графиком}$ функции $x(t) = 100 - \frac{200}{t+2}$ является часть гиперболы



 $x(t) = -\frac{2}{t}$, смещённой влево на 2 и вверх на 100. Приблизительный график зависимости пройденного расстояния от времени приведён на рисунке.

6. **Решение**. Равные хорды стягивают равные дуги, поэтому дуга AB равна дуге PQ, и следовательно дуга AP равна дуге BQ. Таким образом APBQ — вписанная равнобедренная трапеция, а MO — её ось симметрии и биссектриса угла AMQ. То есть \angle OMA = \angle OMQ = α . Аналогично, рассматривая симметрию относительно *OK*, получим, что \angle OKP = \angle OKD = β .

Тогда \angle KOM = 180° – α – β . \angle BLD - внешний угол треугольника LMK. Поэтому \angle BLD = \angle LMK + \angle LKM = 180° – 2α + 180° – 2β . = 360° – $2(\alpha+\beta)$ = $2\angle$ KOM, что и требовалось доказать.



- 1. Один градус шкалы Цельсия равен 1,8 градусов шкалы Фаренгейта, при этом 0° по Цельсию соответствует 32° по шкале Фаренгейта. Может ли температура выражаться одинаковым числом градусов как по Цельсию, так и по Фаренгейту?
- 2. Даны квадратные трехчлены f и g с одинаковыми старшими коэффициентами. Известно, что сумма четырех корней этих трехчленов равна p. Найдите сумму корней трехчлена f+g, если известно, что он имеет два корня.
- 3. Дан равносторонний треугольник ABC. Точка K середина стороны AB, точка M лежит на стороне BC, причем BM:MC=1:3. На стороне AC выбрана точка P так, что периметр треугольника PKM наименьший из возможных. В каком отношении точка P делит сторону AC?
- 4. Найдите все простые числа p, для которых существует натуральное число m такое, что $\sqrt{m} + \sqrt{m+p}$ также натуральное число.
- 5. В выпуклом четырехугольнике суммы синусов противолежащих углов равны. Укажите все четырехугольники, для которых это возможно.
- 6. В кубе $ABCDA_1B_1C_1D_1$ площадь ортогональной проекции грани AA_1B_1B на плоскость, перпендикулярную диагонали AC_1 , равна 1. Найдите площадь ортогональной проекции куба на эту плоскость.

1. **Ответ:** да, может.

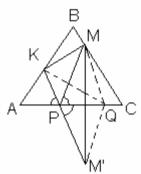
Решение. Из условия следует, что температура по Фаренгейту выражается через температуру по Цельсию следующим образом: $T_F = 1.8 T_C + 32^\circ$. Если $T_F = T_C = x$, то x = 1.8x + 32, то есть, x = -40.

2. **Ответ:** $\frac{p}{2}$.

Решение. Пусть $f(x) = ax^2 + b_1x + c_1$ и x_1 , x_2 – его корни, $g(x) = ax^2 + b_2x + c_2$ и x_3 , x_4 – его корни. Тогда, по теореме Виета, $x_1 + x_2 = -\frac{b_1}{a}$; $x_3 + x_4 = -\frac{b_2}{a}$. По условию, $x_1 + x_2 + x_3 + x_4 = -\frac{b_1 + b_2}{a} = p$. Так как $f(x) + g(x) = 2ax^2 + (b_1 + b_2)x + (c_1 + c_2)$, то сумма корней этого трехчлена равна: $-\frac{b_1 + b_2}{2a} = \frac{p}{2}$.

3. **Ответ:** AP : PC = 2 : 3.

Решение. Так как отрезок *КМ* зафиксирован, то периметр треугольника *РКМ* наименьший из возможных тогда и только тогда, когда длина ломаной *КРМ* — наименьшая из возможных. Для того, чтобы построить такую точку P достаточно рассмотреть точку M, симметричную точке M относительно прямой AC. Тогда P — точка пересечения KM' и AC. Действительно, длина ломаной KPM равна KP + PM = KP + PM' = KM'. Для любой точки Q отрезка AC, отличной от P, KQ + QM = KQ + QM' > KM'.



Так как $\angle MPC = \angle M'PC = \angle KPA$, то треугольники MPC и KPA подобны по двум углам. Следовательно, $AP : CP = AK : CM = \frac{1}{2} : \frac{3}{4} = 2 : 3$.

4. **Ответ:** p – любое нечетное простое число.

Решение. Так как $\sqrt{m}+\sqrt{m+p}=\frac{p}{\sqrt{m+p}-\sqrt{m}}$ — натуральное число и p — натуральное число, то и $\sqrt{m+p}-\sqrt{m}$ — также натуральное число. Следовательно, $\left(\sqrt{m}+\sqrt{m+p}\right)+\left(\sqrt{m+p}-\sqrt{m}\right)=2\sqrt{m+p}$ и $\left(\sqrt{m}+\sqrt{m+p}\right)-\left(\sqrt{m+p}-\sqrt{m}\right)=2\sqrt{m}$ — натуральные числа. Известно, что корень из натурального числа либо извлекается нацело, либо является иррациональным числом, следовательно, \sqrt{m} и $\sqrt{m+p}$ — натуральные числа. Поскольку не существует квадратов натуральных чисел, различающихся на 2, то $p\neq 2$.

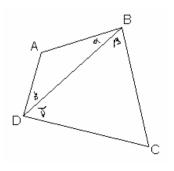
В ином случае (если p – нечетное) p=2t+1, где t – натуральное число. Тогда для $m=t^2$ выполняется условие задачи.

5. Ответ: параллелограмм или трапеция.

Решение. Рассмотрим четырехугольник *ABCD* (см. рисунок). Проведем диагональ *BD* и введем обозначения $\angle ABD = \alpha$; $\angle CBD = \beta$; $\angle ADB = \gamma$; $\angle CDB = \delta$. Тогда $\angle BAD = 180^{\circ} - (\alpha + \gamma)$, $\angle ACD = 180^{\circ} - (\beta + \delta)$.

Тогда, по условию $\sin(\alpha + \gamma) + \sin(\beta + \delta) = \sin(\alpha + \beta) + \sin(\gamma + \delta)$. Применяя формулу преобразования суммы синусов в произведение, получаем:

$$2\sin\left(\frac{a+b+g+d}{2}\right)\cos\left(\frac{a-b+g-d}{2}\right) = 2\sin\left(\frac{a+b+g+d}{2}\right)\cos\left(\frac{a+b-g-d}{2}\right).$$

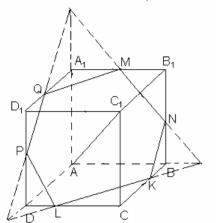


Разделив обе части равенства на выражение, отличное от нуля, получим: $\cos\left(\frac{a-b+g-d}{2}\right) = \cos\left(\frac{a+b-g-d}{2}\right)$.

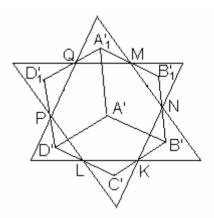
Тогда по формуле разности косинусов $-2\sin\frac{a-d}{2}\sin\frac{g-b}{2}=0$. Следовательно, $\alpha=\delta$ или $\beta=\gamma$, это означает, что хотя бы две стороны данного четырехугольника параллельны.

6. Ответ: 3.

Решение. Выберем плоскость проекций, проходящую через центр куба. Сечением куба



этой плоскостью является правильный шестиугольник MNKLPQ. Проекцией куба на эту плоскость является шестиугольник $A_1B_1BCDD_1$ вершины которого являются центрами правильных треугольников, построенных на шестиугольника сторонах MNKLPQ, поэтому полученный шестиугольник также является правильным, причем вершины А



и C_1 куба проектируются в его центр. Проекцией грани AA_1B_1B является параллелограмм $AA_1B_1B_2$. Его площадь в три раза меньше площади проекции куба.

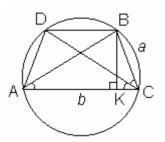
- 1. Решите систему уравнений: $\begin{cases} x^2 + 4\sin^2 y 4 = 0\\ \cos x 2\cos^2 y 1 = 0 \end{cases}$
- 2. В треугольнике $ABC\ BC = a,\ AC = b$ и угол ACB в два раза больше угла BAC. Найдите длину AB.
- 3. На клетчатой бумаге по линиям сетки нарисован квадрат ABCD со стороной 100 клеток. Рассматриваются ломаные длины 200 с концами в точках A и C. Какое наименьшее количество таких ломаных надо провести, чтобы через каждый узел сетки внутри и на границе этого квадрата проходила хотя бы одна ломаная?
- 4. Известно, что f, g и h квадратные трехчлены с положительными старшими коэффициентами. Докажите, что если каждые два из них имеют общий корень, то трехчлен f+g+h имеет корень.
- 5. В тетраэдре *PABC* высота, опущенная из вершины *P*, проходит через ортоцентр треугольника *ABC*. Найдите отношение площадей граней *PAB* и *PAC*, если $PC = 6 \sqrt{2}$; $PB = 6 + \sqrt{2}$; $BC = 2\sqrt{19}$.
- 6. Докажите, что переставив цифры в натуральном числе, являющемся целой степенью двойки (большей, чем третья) нельзя получить число, также являющееся целой степенью двойки.

Ответ:
$$x = 0$$
, $y = \frac{p}{2} + pn$, где $n \in Z$.

Решение. Запишем второе уравнение в виде $\cos x = 2\cos^2 y + 1$. Тогда левая часть не превосходит единицы, а правая – не меньше единицы. Следовательно, равенство возможно тогда и только тогда, когда $\cos y = 0$ и $\cos x = 1$. Тогда $|\sin y| = 1$, и из первого уравнения следует, что x = 0.

2. **Ответ:**
$$\sqrt{a(a+b)}$$
.

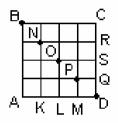
Решение. Рассмотрим окружность, описанную около треугольника ABC. Пусть D — точка пересечения биссектрисы угла C с этой окружностью (см. рисунок). Так как $\angle BCD = \angle ACD = = \angle BAC$, то BD = AD = BC = a. Следовательно, ADBC — равнобокая трапеция. Пусть BK — высота трапеции. Тогда $CK = \frac{b-a}{2}$, $AK = \frac{b+a}{2}$, $BK^2 = BC^2 - CK^2$, следовательно, $AB^2 = AK^2 + + BC^2 - CK^2 = a^2 + ab$.



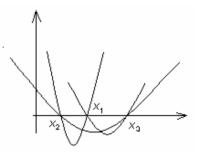
Тот же результат можно получить, применив теоремы синусов и косинусов к треугольнику ABC.

3. Ответ: 101 ломаная.

Решение. Рассмотрим узлы сетки, принадлежащие диагонали *BD*. Заметим, что каждая рассматриваемая ломаная проходит только через один из этих узлов. Всего таких узлов 101, следовательно, и ломаных не меньше, чем 101. Пример для 101 ломаной строится аналогично примеру, изображенному на рисунке для квадрата 4×4 . Проведены пять ломаных: *ADC*, *AMPQC*, *ALOSC*, *AKNRC* и *ABC*.



- 4. Решение. Возможны два случая:
- 1) Все три трехчлена имеют общий корень. Тогда утверждение задачи очевидно.
- 2) Трехчлены f, g и h не имеют общего корня. Пусть x_1 , x_2 и x_3 общие корни этих трехчленов, взятых попарно и x_2 < x_1 < x_3 (см. рисунок). Поскольку старшие коэффициенты данных трехчленов положительны, то у графика их суммы найдутся точки, лежащая выше оси Ох. С другой стороны значение суммы этих трехчленов в точке x_1 отрицательно. Таким образом, f + g + h непрерывная функция, которая принимает и положительное и отрицательное значение. Следовательно, график этой функции пересекает ось Ох, то есть f + g + h имеет корень.

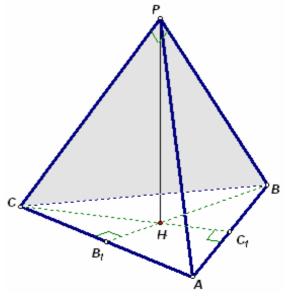


5. Otbet:
$$\frac{S_{PAB}}{S_{PAC}} = \frac{6 + \sqrt{2}}{6 - \sqrt{2}} = \frac{19 + 6\sqrt{2}}{17}$$
.

Решение. Пусть PABC — данный тетраэдр, BB_1 и CC_1 — высоты треугольника ABC, H — ортоцентр этого треугольника (см. рисунок).

Заметим, что $PB^2 + PC^2 = (6 + \sqrt{2})^2 + (6 - \sqrt{2})^2 = 76 = BC^2$, то есть треугольник PBC — прямоугольный ($\angle BPC = 90^\circ$ по теореме, обратной теореме Пифагора).

Так как прямая CC_1 является ортогональной проекцией прямой PC на плоскость ABC и $CC_1 \perp AB$, то $PC \perp AB$ (по теореме о трех перпендикулярах). Кроме того, по доказанному $PC \perp PB$, поэтому $PC \perp APB$ (по признаку перпендикулярности прямой и



плоскости), следовательно, $PC\bot PA$. Аналогично доказывается, что $PA\bot PB$. Таким образом треугольники PAB и PAC — прямоугольные (с прямыми углами при вершине P), тогда $\frac{S_{PAB}}{S_{PAC}} = \frac{PB}{PC}$.

Отметим, что тетраэдр, вершина которого ортогонально проектируется в ортоцентр противолежащей грани, называется ортоцентрическим. У него есть много интересных свойств, в частности, остальные его вершины также проектируются в ортоцентры противолежащих граней. В приведенном решении это свойство было доказано для случая, когда одна из граней тетраэдра — прямоугольный треугольник (ортоцентр прямоугольного треугольника — вершина прямого угла). Полученный тетраэдр является прямоугольным, то есть имеет три плоских прямых угла при одной из вершин. Прямоугольный тетраэдр является частным случаем ортоцентрического.

6. **Решение.** Предположим, что найдется такая степень двойки 2^n , переставив цифры в которой мы получили другую степень двойки 2^k (без ограничения общности можно считать, что n > k > 3). Поскольку натуральное число имеет такой же остаток при делении на 9, как и сумма его цифр, то 2^n и 2^k имеют одинаковые остатки при делении на 9. Следовательно, $2^n - 2^k = 2^k(2^{n-k} - 1)$ делится на 9.

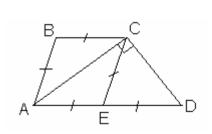
Перебором убеждаемся в том, что наименьшая степень двойки, дающая остаток 1 при делении на 9 – это 6. Следовательно, $n-k\geq 6$. Тогда $2^{n-k}-1\geq 63$, то есть, $2^n-2^k\geq 2^k\cdot 63$, откуда $2^n\geq 2^k\cdot 64$. Но числа 2^n и 2^k имеют одинаковое количество разрядов. Получено противоречие.

- 1. Решите уравнение $x + \frac{x}{x} + \frac{x}{x + \frac{x}{x}} = 1$.
- 2. Боковая сторона трапеции равна одному из оснований и вдвое меньше другого. Докажите, что другая боковая сторона перпендикулярна одной из диагоналей трапеции.
- 3. Маша задумала натуральное число и нашла его остатки при делении на 3, 6 и 9. Сумма этих остатков оказалась равна 15. Найдите остаток от деления задуманного числа на 18.
- 4. В треугольнике ABC проведены биссектрисы AA_1 и CC_1 . M и K основания перпендикуляров, опущенных из точки B на прямые AA_1 и CC_1 . Докажите, что $MK \parallel AC$.
- 5. На вопрос о возрасте его детей математик ответил: "У нас с женой трое детей. Когда родился наш первенец, суммарный возраст членов семьи был равен 45 годам, год назад, когда родился третий ребёнок 70 лет, а в этом году суммарный возраст детей 14 лет". Сколько лет каждому ребенку?
- 6. Двое играют на доске 4×4 по следующим правилам. Каждый своим ходом закрашивает одну клетку, причем каждая клетка может быть закрашена только один раз. Проигрывает тот, после чьего хода образуется полностью закрашенный квадрат 2×2. Кто выиграет: начинающий или его партнер и как нужно играть, чтобы выиграть?

1. **Ответ:** −2.

Решение. На области определения уравнение можно привести к виду $x+1+\frac{x}{x+1}=1$. Умножим обе части уравнения на x+1. После упрощения получим: $x^2+2x=0$, то есть, x=0 или x=-2. Корнем уравнения является только x=-2.

2. **Решение**. Пусть ABCD — трапеция, $AB = BC = \frac{1}{2}AD$. Рассмотрим точку E — середину AD (см. рисунок). Тогда ABCE — параллелограмм, так как AE и BC равны и параллельны. Поэтому $EC = AB = \frac{1}{2}AD$. Следовательно, в треугольнике ACD медиана CE равна половине стороны AD, к которой она проведена. Поэтому $\angle ACD = 90^{\circ}$.

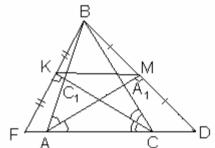


3. Ответ: 17.

Решение. Остаток при делении числа на 3 не превосходит 2, при делении на 6 — не превосходит 5, при делении на 9 — не превосходит 8. Поэтому единственным случаем, когда сумма этих остатков равна 15 = 2 + 5 + 8, является тот, в котором эти остатки равны соответственно 2, 5 и 8.

Так как задуманное число дает остаток 8 при делении на 9, то при делении на 18 оно может давать остаток 8 или остаток 17. В первом случае остаток при делении на 6 равен 2, что противоречит условию. Убедимся, что во втором случае условие выполняется: действительно, если остаток при делении на 18 равен 17, то остатки при делении на 3, 6 и 9 равны соответственно 2, 5 и 8.

4. **Решение.** Продолжим BM и BK до пересечения с AC в точках D и F соответственно (см. рисунок). Так как AM – биссектриса и высота треугольника ABD, то этот треугольник – равнобедренный. Следовательно, M – середина DB. Аналогично, K – середина BF. Следовательно, MK – средняя линия треугольника BDF, поэтому $MK \parallel DF$, то есть $MK \parallel AC$.

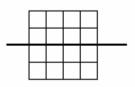


5. Ответ: 8 лет, 5 лет, 1 год.

Решение. Из условия задачи следует, что третьему ребенку 1 год. Пусть год назад первому и второму ребенку было x и y лет соответственно. В это же время суммарный возраст родителей был равен 45 + 2x. По условию, суммарный возраст семьи в это время равняется 70 годам, следовательно, 70 - 45 = 3x + y. В этом году суммарный возраст детей - 14 лет, поэтому (x + 1) + (y + 1) + 1 = 14. Решая систему уравнений, получим x = 7, y = 4. Следовательно, первому ребенку сейчас 8 лет, второму - 5 лет.

6. Ответ: выиграет второй игрок.

Решение. Покажем, как следует играть второму игроку, чтобы выиграть, независимо от ходов первого. Мысленно разделим квадрат на два прямоугольника 2×4 (см. рисунок). Каждым ходом первый игрок закрашивает одну из клеток в одном из



этих прямоугольников. Второй закрашивает аналогичную клетку в другом прямоугольнике (параллельный перенос по вертикали на 2). До тех пор, пока первый может сделать непроигрышный ход, его может сделать и второй игрок. Тогда в какой-то момент ход первого будет проигрывающим.